首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   6篇
化学   152篇
晶体学   6篇
力学   10篇
数学   6篇
物理学   29篇
  2022年   2篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   5篇
  2016年   10篇
  2015年   8篇
  2014年   12篇
  2013年   19篇
  2012年   19篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   17篇
  2007年   9篇
  2006年   3篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
61.
62.
Zirconia doped by heteropolytungstic acid HPW have been synthesized by sol–gel method using two drying techniques of the solvent evacuation. Samples were analyzed with adsorption–desorption of N2 at 77 K, and the aerogel catalyst was found to exhibit a higher surface area and a higher average pore diameter compared to xerogel. XRD results show that aerogel develops ZrO2 tetragonal phase, whereas xerogel is amorphous. The thermal analysis studies show that the aerogel’s thermal stability is better than the xerogel one. The catalytic behavior of the aerogel and xerogel toward the nature of the isomerization products probably depends on the acidity and the presence of carbide species. This has been explained by XPS and isopropanol dehydration reaction. In fact, the deconvolution aerogel’s Cls bands reveals the presence of four carbon species assigned to C–C, C=O, C–O and carbide species.  相似文献   
63.
In this work, monodisperse polystyrene (PS) particles were synthesized in ethanol/water medium using sodium salt of styrene sulfonic acid and 2,2′-azobis(isobutyronitrile) as ionic comonomer and nonionic initiator, respectively. The polymerization was carried out at low agitation speed, and no stabilizer (or surfactant) was added to the polymerization medium. This polymerization system (stabilizer-free dispersion polymerization) was initiated as a homogeneous solution of monomer, comonomer, medium, and initiator. With the production of free radicals, polymerization developed into a heterogeneous system. The effect of various polymerization conditions on the size and size distribution of the obtained particles was evaluated. The experimental results showed that with an increase in ethanol content, the size of the particles increased while no significant change was observed in particle size distribution. Furthermore, with increasing ionic comonomer content, the size of the particles decreased and their size distribution became broader. Moreover, it was observed that addition of an electrolyte to the polymerization medium also increased the particles’ size and broadened their size distribution. It is noteworthy to point out that the coagulation occurred in higher amounts of electrolyte. Finally, it is concluded that the polar component of Hansen solubility parameter of the polymerization medium affects the particle size and particle size distribution greatly.  相似文献   
64.
Atmospheric pressure chemical ionizations (APCIs) of morphine, codeine, and thebaine were studied in a corona discharge ion source using ion mobility spectrometry (IMS) at temperature range of 100°C–200°C. Density functional theory (DFT) at the B3LYP/6‐311++G(d,p) and M062X/6‐311++G(d,p) levels of theory were used to interpret the experimental data. It was found that in the presence of H3O+ as reactant ion (RI), ionization of morphine and codeine proceeds via both the protonation and carbocation formation, whereas thebaine participates only in protonation. Carbocation formation (fragmentation) was diminished with decrease in the temperature. At lower temperatures, proton‐bound dimers of the compounds were also formed. Ammonia was used as a dopant to produce NH4+ as an alternative RI. In the presence of NH4+, proton transfer from ammonium ion to morphine, codeine, and thebaine was the dominant mechanism of ionization. However, small amount of ammonium attachment was also observed. The theoretical calculations showed that nitrogen atom of the molecules is the most favorable proton acceptor site while the oxygen atoms participate in ammonium attachment. Furthermore, formation of the carbocations is because of the water elimination from the protonated forms of morphine and codeine.  相似文献   
65.
Abstract

Waterborne polyurethanes (WPUs), owing to their environmental friendliness and non-flammability, are considered as a green class of materials for a wide spectrum of applications, like adhesives, coatings, drug delivery, and tissue engineering. However, to strengthen their thermal stability, water resistance, mechanical properties, and introduce new peculiarities to these polymers, the incorporation of different types of (nano) fillers within their molecular state, emerged novel opportunities and challenges in material sciences. This approach provides new vitality to these materials since the strong interactions between WPU matrices and fillers facilitate the formation of desired WPU composites (WPUCs). Therefore, WPUCs have greatly promoted the construction and designing of novel materials, like hyperbranched WPUs and their nanocomposites. Thus, the aim of the present article is to deeply overview the properties and application of WPUCs in the various realm. The review also provides a brief discussion on the design and synthesis of WPUs, WPUCs, hyperbranched WPUs, and their nanocomposites along with the implementation of naturally derived materials for the development of sustainable WPUCs.  相似文献   
66.
Sodium lauryl sulfate (SLS) and sodium lauryl ether sulfate (SLES) are commonly used in many dishwashing liquids. These chemicals are adsorbed on the dish surface during the washing process and then transferred to food or drink in the cooking process. In this work, the adsorption of SLS and SLES on different dish surfaces in aqueous solution was studied. Stainless steel, copper, aluminum, Pyrex, Teflon and arcopal china ware were used in this study. The adsorbed chemical remained on the surface after rinsing was measured by thermal desorption using an ion mobility spectrometer as the detector. Although arcopal china ware showed the maximum amount of adsorption, and Pyrex and stainless steel dishes showed the minimum amount of residual chemical, the results showed that the amount of adsorbed chemicals on dish surfaces is less than 428 ng.cm?2, which is well below the health risk dosage. The released SLS and SLES from dish surfaces into cold or hot water were also measured and compared for different dishes.  相似文献   
67.
Cellulose acetate (CA) is one of the most important cellulose derivatives and its main applications are its use in membranes, films, fibers, plastics and filters. CAs are produced from cellulose sources such as: cotton, sugar cane bagasse, wood and others. One promissory source of cellulose is bacterial cellulose (BC). In this work, CA was produced from the homogeneous acetylation reaction of bacterial cellulose. Degree of substitution (DS) values can be controlled by the acetylation time. The characterization of CA samples showed the formation of a heterogeneous structure for CA samples submitted to a short acetylation time. A more homogeneous structure was produced for samples prepared with a long acetylation time. This fact changes the thermal behavior of the CA samples. Thermal characterization revealed that samples submitted to longer acetylation times display higher crystallinity and thermal stability than samples submitted to a short acetylation time. The observation of these characteristics is important for the production of cellulose acetate from this alternative source.  相似文献   
68.
The engineering of a complete adlayer of organic nanolines by supramolecular self-assembly has been achieved for the first time on a silicon-based surface at room temperature and has been studied by scanning tunneling microscopy. This complete adlayer has been successfully obtained thanks to the combination of a specific Si(111)-B square root 3x square root 3R30 degrees semiconductive surface and of strong hydrogen bonds between a pair of dipolar molecules.  相似文献   
69.

A series of catalysts based on Mn-Fe loaded zeolites was prepared by impregnation and their activity in the selective catalytic reduction of NO with ammonia (NH3-SCR) was investigated. The highest catalytic conversion was recorded for MnFe-ZSM-5 (MnFe-Z), followed by MnFe-BEA (MnFe-B) and MnFe-MOR (MnFe-M), while MnFe-FER (MnFe-F) showed a very poor activity over the entire temperature range. In order to evidence a correlation between the structure and acidity of the zeolites and NO conversion, the prepared samples were characterized by various techniques (ICP-AES, N2 physisorption at 77 K, XRD, 27NMR, Raman, FTIR spectroscopy of adsorbed ammonia, H2-TPR, DRS UV–Vis, EPR and XPS). The superior catalytic activity of MnFe-Z at low temperature is attributed to the abundance of Mn4+ concentration as revealed by XPS, the highest NH3-L/NH4+ ratio indicative of the contribution of metals in generating Lewis acidic centers as evidenced by IR-NH3, and the better reducibility of manganese and iron on ZSM-5 which increases the kinetics for red-ox cycles as confirmed in TPR analysis. Fe3Mn3O8 mixed oxide phase is also detected by XRD and XPS and can be associated with the high reducibility of MnFe-Z which generates a high oxidation ability favoring NO to NO2 oxidation. Raman spectroscopy was also used to confirm the existence of a strong synergy between metals and ZSM-5 support revealed by the shift in the signal position and the decrease in band intensities. The results showed that the zeolite framework and acidity generate catalysts with different textural and structural properties which influence the metal dispersion and speciation and hence influence the catalytic performances.

  相似文献   
70.
Vitreous samples were prepared in the (100 - x)% NaPO(3)-x% MoO(3) (0 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号